BOSTON
UNIVERSITY

Deep Learning for Data Science
DS 542

https://dl4ds.github.io/fa2025/

Regularization

https://dl4ds.github.io/fa2025/

Regularization

* Why is there a generalization gap between training and test data?

* Overfitting (model describes statistical peculiarities)
* Model unconstrained in areas where there are no training examples

= methods to reduce the generalization gap
* Technically means adding terms to loss function

* But colloquially means any method (hack) to reduce gap between
training and test data

How to bias for smoothness?

Loss = 0 b) Loss = 0 C) Loss = 0
| | / L/ \
7 i y o
| | \ | \
. . y.
‘—"//l - \—// \ ‘d__///!
0.0 " 0.5 " 1.000 " 0.5 " 1.00.0 " 0.5 1.0
Input, z Input, Input,

* Allof these solutions are equivalent in terms of loss.
* Why should the model choose the smooth solution?
Tendency of model to choose one solution over another is

Interpolating Polynomials Overfit A Lot

If our “before” model was good, why do we change it so much?

1.0

0.8 1

0.6 -

0.4 1

0.2 1

0.0 —

wr

before

0.0

1
0.5

— 0.0 —

1.0

1.0

0.8 7

0.6 -

0.4

0.2 1

0.2 1
0.1 -
TH
1 0.0
\ —0.1
after —0.2
]]
0.0 0.5 1.0

W W W o W P oW W

diff

I I
0.5 1.0

Plan for Today

* Reproducing Double Descent Demystified

* Explicit regularization

* Implicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation

Toy Setup

10

— truth
samples

Reproducing Double Descent Demystified...

o A J b o
ConsienT e gﬂwhbalgﬂ,
degree=0, reg=False degree=1, reg=False degree=2, reg=False degree=3, reg=False
10.0 10.0 10.0 10.0
7.5 - 7.5 - 7.5 7.5
___%o | / 5.0 5.0 - 5.0 1
251 2" 2.5- 2.5 1 2.5 1
0.0 T T T 0.0 T T T O.G T T T O.G T T T
00 25 50 75 100 00 25 50 75 100 00 25 50 75 100 00 25 50 75 100
degree=4, reg=False degree=5, reg=False degree=6, reg=False degree=7, reg=False
10.0 10.0 10.0 H&% 10.0
]] _ . _
7.5 7.5 751 7 Ay 75
5.0 - 5.0 - 5.0 5.0
2.5 - 2.5 - 2.5 2.5
0.0 T T T 0.0 T T T O.G T T T O.G T T T
00 25 50 75 1100 00 25 50 75 110 00 25 50 75 100 00 25 50 75 100
degree=8, reg=False degree=9, reg=False degree=10, reg=True degree=11, reg=True
10.0 10.0 10.0 10.0
7.5 - 7.5 - 7.5 7.5
]
5.0 - 5.0 - 5.0 5.0
2.5 - 2.51—" 2.5 2.5
0.0 T T T 0.0 T T T 0.0 T T T 0.0 T T T
00 25 50 75 100 00 25 50 75 100 50 75 10.0 00 25 50 75 100

.KLMBK reSyon

Based on https://iclr-blogposts.github.io/2024/blog/double-descent-demystified/

Regularizing from the Begi

Ling, ogs

degree=0, reg=True

10.0
7.5 1
5.0 A

/

25—

0.0

.0

T T T
2.5 5.0 7.5

degree=4, reg=True

10.0

10.0
7.5 1
5.0
2.5

0.0

0.0

T T T
25 50 75 100
degree=8, reg=True

10.0
7.5 1
5.0 1
2.5

0.0
0.0

25 50 7.5 10.0

degree=1, reg=Tru

7.5 7
5.0 A
2.5

0.0

.0

T T T
2.5 5.0 7.5

degree=5, reg=True

10.0

10.0
7.5 1
5.0
2.5

0.0

0.0

T T T
25 50 75 100
degree=9, reg=True

10.0
7.5 1
5.0
2.5

0.0
0.0

25 5.0 7.5 10.0

“go

npln

degree=2, reg=True

degree=3, reg=True

10.0 10.0
7.5 7.5
5.0 5.0
2.5 2.5
D.G T T T O.G T T T
00 25 50 75 100 00 25 50 75 100
degree=6, reg=True degree=7, reg=True
10.0 10.0
7.5 7.5
5.0 5.0
2.5 2.5
D.G T T T O.G T T T
00 25 50 75 100 00 25 50 75 100
degree=10, reg=True degree=11, reg=True
10.0 10.0
7.5 7.5
5.0 5.0
2.5 2.5
D.G T T T D.G T T T
00 25 50 75 100 00 25 50 75 100

Any Questions?

Moving on
* Reproducing Double Descent Demystified

: : : * Implicit regularization

* Early stopping
* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-
supervised learning

* Data augmentation

Explicit regularization

[@;j—pg,wff’ﬁ}a”
 Standard loss function: /
T ¢ = Argmmin L[]
LOBS ettus I
> = argmin [Z l; [XiaYi]]
¢ i=1

10

Explicit regularization

e Standard loss function:
¢ = Argmin L]

I
= argmin [Z li[xi, %]]
i=1

¢

* Regularization adds an extra term

1
¢ = argqrbnin [Z lilxi,yil + A - glo)]
=1

|

11

Explicit regularization

e Standard loss function:
¢ = Argmin L]

= argmin [Z l; [Xia yz]]

® i=1

* Regularization adds an extra term

1
¢ = argqrbnin [Z lilxi,yil + A - glo)]
=1

* Where g[¢] is smaller for preferred parameters
A > 0 controls the strength of influence

12

Explicit regularization

a)
22.5

Loss function for Gabor
model of Lecture 6 and
Chapter 6.

O
denotes local minima

b1

2.5

13

Explicit regularization

a) Regularization
22.5

b1

2.9

Example of a
regularization function

that prefers parameters

close to 0.

14

Fewer local minima and

EXpll CIt regu la rization mgvaet:js.olute minimum has
A
4 \
a)

225

d1

2.9

0
Po

O denotes local minima

15

Probabilistic interpretation

e Maximum likelihood:

q?b = argmax
@

* Regularization is equivalent to adding a over parameters

A

C T
¢ = argmax HP"“(YJX?:, Cb)Pg)
® =1 '(tL\ leﬁjﬂn%y//&]%k

... what you know about parameters before seeing the data QS as Tikelyor
'U‘*M\‘MCERY/

Equivalence

. . f[la%&b& ec|
* Explicit regularization: oA ;ML,L,,‘-M\ o hew lossform

— N*rmh ﬂyﬁ: _

— . € i, Yi] + A
b arg;nm ; Xi, Vil L/E[g]

eo ol m}[;”z.pﬁ;ﬂ*” Yerm
* Probabilistic interpretation: /
® = argmax | [[Pryiixi,)Pr(@)
Li=1 i
» Converting to Negative Log Likelihood (e.g. —log(-)): ConutiSion

U ‘Fr“al"b"\ SUM

A~ gle] = Slog]Pr(¢)

’ET oW MO~ u"ﬂ‘“ TAN 17

L2 Regularization

* Most common regularization is
* Favors smaller parameters (like in previous example)

A

P = argqinin Lo, {xi,yi}] + Ang?
j

* Also called @

* In neural networks, usually just for weights, and called

y
Fuﬂgﬂzh

18

Why does L2 regularization help?

Bo €R? G B, € R? By € R B; € R?

NS S
(BERST SR SOSH O SN

Outputs are weighted
linear combination of
last layer activations.

Smaller weights
attenuate changes.

19

Why does L2 regularization help?

Bo € R? B, € R? By € R B; € R?

o= e Seas g O

Same for the
pre-activations
into the last layer

20

Why does L2 regularization help?

Bo € R? B, € R? By € R B; € R?

o= e Seas g O

And so on...

All the way back.

21

Why does L2 regularization help?

* Discourages fitting excessively to the training data (overfitting)

* Encourages smoothness between datapoints

* Specifically by making coefficients smaller, so small input changes have
smaller output changes.

22

L2 regularization (simple net from last lecture)

a)I , A =0 b) A\ = 0.00001 C) A\ = 0.0001
’ ’ ’
=1/ / /
V4

éoo / / / \
O:s 4 \ 4 Y \ 4 / 4

'ooo' 05 1000 05 1000 05 10
d) A\ = 0.001 e) A\ =0.01 f) A =0.1

o+]
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 -

PyTorch Explicit L2 Regularizer

SGD ADAM

+
CLASS torch.optim.SGD(params, 1r=0. 001, momentum=0, dampening=0, weight_decay=0, CLASS torch.optim.Adam(params, 11=0.001, betas=(0.9, 0.999), eps=1e-08,
e — $ _ _ _ I] -
nesterov=False, +, maximize=False, foreach=None, differentiable=False) [SOURCE] welght decay=0 avsgrad-False, +, Toreach-None, Rexinize=False,
capturable=False, differentiable=False, fused=None) [SOURCE]
Implements stochastic gradient descent (optionally with momentum). .
Implements Adam algorithm.
Parameters Parameters

« params (iterable) - iterable of parameters to optimize or dicts defining parameter groups params (iterable) - iterable of parameters to optimize or dicts defining parameter groups

s Ir (float, Tensor, optional) - learning rate (default: 1e-3). A tensor LR is not yet supported

+ Ir (float, optional) - learning rate (default: 1e-3)
for all our implementations. Please use a float LR if you are not also specifying fused=True

+ momentum (float, optional) - momentum factor (default: 0) or capturable=True

— * weight_decay (float, optional) - weight decay (L2 penalty) (default: 0) » betas (Tuple[float, float], optional) - coefficients used for computing running averages of
gradient and its square (default: (0.9, 0.999))
+ eps (float, optional) - term added to the denominator to improve numerical stability

(default: 1e-8)
https://pytorch.org/ /stable/generated/torch.optim.SGD.html _ «» weight_decay (floar, optional) - weight decay (L2 penalty) (default: 0)

https://pytorch.org/ /stable/generated/torch.optim.Adam.html

24

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

Any Questions?

277

Moving on

Reproducing Double Descent Demystified
Explicit regularization &= aicleled o (555
Implicit regularization & not ' fo [, beywk |
Early stopping er el el
Ensembling

Dropout

Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation

4

|

Implicit regularization

OL[,] -
(9qb a—0

b1 = Pr —

* In the limit, as a — 0, the gradient
descent equation becomes the

gradient flow differential equation.

* Doesn’t converge to the same
place

| gradient

descent

Implicit regularization

_ OL[¢.] lim @ — _%
¢t+1_¢t_a a¢ a—=0 dt_ a¢
 The implicit regularization can be derived: j ﬂm@\ |
@ Lor rajuu Ay
LGD[H \7[}\5\ 100'1" &1@?
53(m\;h\‘+7 :
= ?r{.&fgnﬁ Vo aaerﬁﬁxﬂo‘f‘“\ﬂ

-‘Pc}r’_ ‘1?

y

LN

iMF\LﬂGL, CC }(E‘,ufrr”m 27

Implicit regularization

a)l Loss b)

gradient
descent

d1

0 | -] 0
o ®o

Gradient descent doesn’t Plot of the Implicit regularization
: 2
converge to same location as (~||6L/a¢||) to be added to loss

(continuous) gradient flow.

Regularization

C) Loss + regularization

0
b0

With regularization, continuous
descent converges to same
28
place

Implicit regularization of SGD

* Gradient descent disfavors areas where gradients are steep
2 -1 ren m[;fﬁlﬁtggﬁfq%

~ a ||OL . £ ot Inere.
I, — 1, ?r@—ﬁ%g T v
* SGD likes all batches to have similar gradients
515
56’][} .ﬁf@?‘rg 9|b
) _ 5oL, oL|? & P S
Lsapld] = Lapld] + — > - hove PMOSY HIT | VAo
ib b=1 (3’@5 6’¢ ngﬁ ;lr,fvml\\(jrmfl\;ﬁrers LTDES

?:EBb 29

Implicit regularization of SGD

* Gradientdescent disfavors areas where gradients are steep

Loplél =Lig) + 5 |52

* SGD likes all batches to have similar gradients

0L, OL 2
O

B

52| 0

Lsapl¢] = Lap[e] + %

oL, _oLf

= Llg] + -

4

. Eepends on learning rate — perhaps why larger learnlng rates generalize
etter.

Loss and Regularlzatlon Surfaces

Loss Lig] GD modification

225

oL
Original Gabor Model —
Loss

[R

b1

{ 4
-10 0 10-10 0 10

9 ®o d) do
SGD modification Modified loss, Lsap|®

Sl
E

Lscp(®)]

S
I
[t

8Lb 8L

0 E
—BZ

-/ 1
10 0 10-10 0 10

a) MNISTID no label noise b) MNISTID no label noise

=== [Fyll batch, LR = 0.5 | === Batch size 10, LR = 0.1
— Full batch, LR = 0.1 — Batch Size 100, LR = 0.1
601 tk Full batch, LR = 0.05 60| Full batch (4000), LR = 0.1

Test

Train

0 ST . 0 . . .
0 100 200 300 ~—400 0 100 200 300 400

Hidden layer size Hidden layer size

Generally, performance is
* best forlarger learning rates
* best with smaller batches -

Recap: Implicit regularization of GD and SGD

* Larger learning rates may lead to better generalization

* SGD seems to favor places where gradients are stable (all batches
agreed on slope)

* SGD generalizes better than GD
* Smaller batches in SGD generally perform better than larger ones

33

Any Questions?

277

Moving on

Reproducing Double Descent Demystified
Explicit regularization
Implicit regularization

Ensembling
Dropout
Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation

Early stopping

* If we stop training early, weights don’t have time to overfit to noise
* Weights start small, don’t have time to get large
* Reduces effective model complexity

e Known as

 Don’t have to re-train with different hyper-parameters — just
“checkpoint” regularly and pick the model with lowest validation

loss \)
e o\ M o) @ Arom AVARS Stondarch (P

C6 M?MU%YHU\QQ-\(R;%{\ ktji';% —rﬁ{?f MV\ C/[r\QLb\?ULtI'\‘.}YL
G0 back o begr vellbuion theck e 35

lo wwm“-s

a) Un+/aened b) c)

1.0
] lter = 0] Iter = 1000 | - Iter = 5000
Loss = 32.24 | 1 Loss = 1.64 | 1 Loss @ -'f—pgw,l :,,
Z [
- 4 N . O>% .
1Y \ L
o _ ' =
o® .. : e® .. gﬁj‘f) bﬂ%
—_— —_— 6
0.5 1.0 0.0 0.5 1.0 vl , oS
f)
lter = 10000 | - lter = 50000 | | Iter = 200000
Loss = 0.80 1 Loss = 0.36 1 Loss = 0.16
) . .
) @
200 /° N
5]
© w/
| o® %
-1.0 ey S S e S ———————
0.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.0
Input, x Input, x Input, x

Simplified shallow network model with 14 linear regions initialized randomly (cyan curve in (a)) and trained
with SGD using a batch size of five and a learning rate of 0.05. °°

Project 1 Provided Code

accuracy Loss
1.0 1
2.5 4
0.9
2.0 4
0.8 —— training 151 —— training
—— validation —— validation
1.0
0.7 4
os | G\ 5_’%? 011' &G(I\l
0.6
0.0 4
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

epoch epoch

Project 1 36 Epochs

accuracy
0.505 4
0.504 -
0.503 -
—— training
validation
0.502
0.501 A
0.500 -
0 10 15 20 25 30 35

epoch

Loss

0.69320 4

0.69318 -

0.69316 -

0.69314 -

0.69312 -

0.69310 A

0.69308 4

0.69306

—— training

validation

10

15

20
epoch

0L UL O'&‘eﬁfﬁ:f)o]ﬁjL
Fﬂﬁ? runm:i‘j
o find/se€

Yhese |oter
N vaem ents.

Any Questions?

277

Moving on

Reproducing Double Descent Demystified
Explicit regularization

Implicit regularization

Early stopping

Dropout
Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation

Ensembling

e Combine several models —an ensemble
* Combining outputs

_______|Mean | Median/Frequent (Robust)

Regression Mean of outputs Median of outputs

Classification Mean before softmax Most frequent predicted class

Mord. ymn
* Can be simply different initializations or evelmgifferent mo@ u.//é{wm;ﬂ;#

* Or train with different subsets of the data resampled with mod s
replacements — bootstrap aggregating (bagging)

X)W‘uﬁuﬁy SLIGP"E&\U\{ W\OC&JS “"fbx:}r\ao{ bi//d&rg-ge{@,ﬂjl/ \iml(é"’fmff’ﬂﬂ[fg
i é“wgrkﬁca"l g—'((uu—:fu v e »

Single Model vs Bagged Ensemble

a)4 ; Origimal b) Model 1 C) Model 2
= './\ j /'\ j/»\
S > B 4 \ - R
O 1 'Mv// y \-v’/] ‘AAvv//
- Single model 1 Bagging Model 1 1 Bagging Model 2
00 05 1000 05 1000 05 10
d)4 . Model 3 e) Model 4 f) Ensemble
~ | | o~
= /7)
g N % \\ Lt \\
+ \ -r’
> \ |
O] \ Y \/ / | r O -/] \ ¥ \."’/
1 Bagging Model 3 1 Bagging Model 4 1 Ensembling via bagging.
I'Oo.o' - 05 1000 05 1000 05 10
Input, Input, Input,

42

Any Questions?

277

Moving on

Reproducing Double Descent Demystified
Explicit regularization

Implicit regularization

Early stopping

Ensembling

Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation

lteration: 1
lteration: 3

: : : o Y

* Makes the network less dependent on any given hidden unit. o WP

o\, At test time, all hidden units are active, which was not the case during training
Erec,kid"@ * Must rescale using weight scaling inference rule
 Multiply weights by (1 — dropout probability) so Wthe same.

44

Dropout

Original b) Turnoff hiddenunit8 €) 2000 iters dropout (7/8/9)

b0 05 1000 05 1000 05
Input, Input, Input,

* Prevents situations where subsequent hidden units correct for excessive

swings from earlier hidden units
e (Can eliminate kinks in function that are far from data and don’t contribute to

45

training loss

Monte Carlo Dropout for Inference (optional)

* Run the network multiple times with different random subsets of
units clamped to zero (as in training).

* Combine the results using an ensembling method,

* This is closely related to ensembling in that every random version
of the network i1s a different model; however, we do not have to

train or store multiple networks here. IS

Ynimies Traancny P
MOre, _QU:M\QL’\:\)ffD “\Tr’_b\: n.'ﬁﬂﬂ
’li" NN f&t‘b)f% Fes r_c-,\,kiﬁ? < Q"C“’L'?eﬂ \

Any Questions?

277

Moving on

Reproducing Double Descent Demystified
Explicit regularization

Implicit regularization

Early stopping

Ensembling

Dropout

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation

Adding noise

Adding noise to input with different variances.

a), . b) c)
. o, = 0.0 . o, = 0.60 . o, = 1.0
> / \ / \ ' ’\\
5 X ' '
Q. ' /
e o5 0 o0 05 0 00 o5 10
Input, Input, x Input, x

* toinputs—induces weight regularization (see Exercise 9.3 in UDL)
* to weights — makes robust to small weight perturbations
* to outputs (labels) - reduces “overconfident” probability for target class

48

Any Questions?

277

Moving on

Reproducing Double Descent Demystified
Explicit regularization

Implicit regularization

Early stopping

Ensembling

Dropout

Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation

Transfer & Multitask Learning, Augmentation

* Strictly speaking not regularization, but can help improve
generalization when dataset sizes are limited

50

Vone “‘-”/ LIS fzo.

levgst (M| o,

ﬂk@m%d:i}ﬁw

Transfer Learning

(1) Train the model for
segmentation

Assume we have lots of
segmentation training

Segmentation

Model |—>
output layer

data
| copy
Depth Assume we have
Meiclel = output layer limited depth training
data
(2) Replace the final layers to (3) Either:

match the new task and a) Freeze the rest of the layers

and train the final layers
b) Finetune the entire model

Multi-Task Learning

Segmentation

output layer
u— -
Depth

output layer

* Train the model for 2 or more tasks simultaneously
* Weighted combo of loss functions
Ltotal = a- Lsegmentation + :8 | Ldepth
* Less likely to overfit to training data of one task

* Can be harder to get training to converge. Might have to vary the
individual task loss weightings, a and 5.

52

Self-Supervised Learning

Inpainting

Model |—>
output layer

The animal didn’t cross th‘ ot because it was too tired.

o PELT 204
* Mask out part of the training data

* Train model to try to infer missing data ees Mf“j’}ﬂ
* masked data is the target
=» Model learns characteristics of the data

Then apply transfer learning s

Any Questions?

277

Moving on

Reproducing Double Descent Demystified
Explicit regularization

Implicit regularization

Early stopping

Ensembling

Dropout

Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation

e) Color balance

Flip
-) :'\.} .

Rotate and crop

d)

Vertical stretch

55

Image augmentation in PyTorch

import torch

import torchvision.transforms as transforms

Define augmentation pipeline

transform = transforms.Compose([
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomVerticalFlip(p=0.3),
transforms.RandomRotation(degrees=30),
transforms.Colorlitter(brightness=0.5, contrast=0.5, saturation=0.5),
transforms.RandomAffine(degrees=20, translate=(0.2, 0.2), shear=10),
transforms.RandomPerspective(distortion_scale=0.5, p=0.5),

transforms.ToTensor(), # Convert image to tensor

1)

Apply transformations multiple times to visualize augmentation

augmented_image = transform(image)

| " I vision/main/ : himl

https://pytorch.org/vision/main/transforms.html

Data Augmentation: MNIST1D

TrainError 0.00, Test Error 31.00

Error

100

80 -

o0

40 A

20 A

— train
— fest
— test (augmented)

10

20

Epoch

30

40

50

Examples in training set: 4000
Examples in test set: 1000
Length of each example: 40

* Randomly circularly
rotate

* randomly scale between
0.8and 1.2

57

Regularization overview

Make function smoother

Increase data

~

/

Data
augmentation
Multi-task
learning
Transfer
learning
Implicit

regularization

Apply noise
to weights

~

/

7

Combine multiple models

Find wider minima

58

Any Questions?

277

Reproducing Double Descent Demystified
Explicit regularization

Implicit regularization

Early stopping

Ensembling

Dropout

Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation

	Slide 1: Deep Learning for Data Science DS 542
	Slide 2: Regularization
	Slide 3: How to bias for smoothness?
	Slide 4: Interpolating Polynomials Overfit A Lot
	Slide 5: Plan for Today
	Slide 6: Toy Setup
	Slide 7: Reproducing Double Descent Demystified…
	Slide 8: Regularizing from the Beginning
	Slide 9: Any Questions?
	Slide 10: Explicit regularization
	Slide 11: Explicit regularization
	Slide 12: Explicit regularization
	Slide 13: Explicit regularization
	Slide 14: Explicit regularization
	Slide 15: Explicit regularization
	Slide 16: Probabilistic interpretation
	Slide 17: Equivalence
	Slide 18: L2 Regularization
	Slide 19: Why does L2 regularization help?
	Slide 20: Why does L2 regularization help?
	Slide 21: Why does L2 regularization help?
	Slide 22: Why does L2 regularization help?
	Slide 23: L2 regularization (simple net from last lecture)
	Slide 24: PyTorch Explicit L2 Regularizer
	Slide 25: Any Questions?
	Slide 26: Implicit regularization
	Slide 27: Implicit regularization
	Slide 28: Implicit regularization
	Slide 29: Implicit regularization of SGD
	Slide 30: Implicit regularization of SGD
	Slide 31
	Slide 32
	Slide 33: Recap: Implicit regularization of GD and SGD
	Slide 34: Any Questions?
	Slide 35: Early stopping
	Slide 36
	Slide 37: Project 1 Provided Code
	Slide 38: Project 1 36 Epochs
	Slide 39: Same Seed (1) 500 Epochs
	Slide 40: Any Questions?
	Slide 41: Ensembling
	Slide 42
	Slide 43: Any Questions?
	Slide 44: Dropout
	Slide 45: Dropout
	Slide 46: Monte Carlo Dropout for Inference (optional)
	Slide 47: Any Questions?
	Slide 48: Adding noise
	Slide 49: Any Questions?
	Slide 50: Transfer & Multitask Learning, Augmentation
	Slide 51: Transfer Learning
	Slide 52: Multi-Task Learning
	Slide 53: Self-Supervised Learning
	Slide 54: Any Questions?
	Slide 55: Data augmentation
	Slide 56: Image augmentation in PyTorch
	Slide 57: Data Augmentation: MNIST1D
	Slide 58: Regularization overview
	Slide 59: Any Questions?

