BOSTON
UNIVERSITY

Deep Learning for Data Science
DS 542

https://dl4ds.github.io/fa2025/

Regularization



https://dl4ds.github.io/fa2025/

Regularization

* Why is there a generalization gap between training and test data?

* Overfitting (model describes statistical peculiarities)
* Model unconstrained in areas where there are no training examples

= methods to reduce the generalization gap
* Technically means adding terms to loss function

* But colloquially means any method (hack) to reduce gap between
training and test data



How to bias for smoothness?
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* Allof these solutions are equivalent in terms of loss.
* Why should the model choose the smooth solution?
Tendency of model to choose one solution over another is



Interpolating Polynomials Overfit A Lot

If our “before” model was good, why do we change it so much?
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Plan for Today

* Reproducing Double Descent Demystified

* Explicit regularization

* Implicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Toy Setup
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Reproducing Double Descent Demystified...
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Based on https://iclr-blogposts.github.io/2024/blog/double-descent-demystified/



Regularizing from the Begi
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Any Questions?

Moving on
* Reproducing Double Descent Demystified

: : : * Implicit regularization

* Early stopping
* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-
supervised learning

* Data augmentation



Explicit regularization

[@;j—pg,wff’ﬁ}a”
 Standard loss function: /
T ¢ = Argmmin L[]
LOBS  ettus I
> = argmin [Z l; [XiaYi]]
¢ i=1
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Explicit regularization

e Standard loss function:
¢ = Argmin L]

I
= argmin [Z li[xi, %]]
i=1

¢

* Regularization adds an extra term

1
¢ = argqrbnin [Z lilxi,yil + A - glo)]
=1

|
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Explicit regularization

e Standard loss function:
¢ = Argmin L]

= argmin [Z l; [Xia yz]]

® i=1

* Regularization adds an extra term

1
¢ = argqrbnin [Z lilxi,yil + A - glo)]
=1

* Where g[¢] is smaller for preferred parameters
A > 0 controls the strength of influence
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Explicit regularization

a)
22.5

Loss function for Gabor
model of Lecture 6 and
Chapter 6.

O
denotes local minima

b1

2.5
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Explicit regularization

a) Regularization
22.5

b1

2.9

Example of a
regularization function

that prefers parameters

close to 0.
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Fewer local minima and
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Probabilistic interpretation

e Maximum likelihood:

q?b = argmax
@

* Regularization is equivalent to adding a over parameters

A

C T
¢ = argmax HP"“(YJX?:, Cb)Pg)
® =1 '(tL\ leﬁjﬂn%y//&]%k

... what you know about parameters before seeing the data QS as Tikelyor
'U‘*M\‘MCERY/




Equivalence

. . f[la%&b& ec|
* Explicit regularization: oA ;ML,L,,‘-M\ o hew lossform
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® = argmax | [ [ Pryiixi, )Pr(@)
Li=1 i
» Converting to Negative Log Likelihood (e.g. —log(-) ): ConutiSion
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L2 Regularization

* Most common regularization is
* Favors smaller parameters (like in previous example)

A

P = argqinin Lo, {xi,yi}] + Ang?
j

* Also called @

* In neural networks, usually just for weights, and called

y
Fuﬂgﬂzh
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Why does L2 regularization help?

Bo €R? G B, € R? By € R B; € R?

NS S
(BERST SR SOSH O SN

Outputs are weighted
linear combination of
last layer activations.

Smaller weights
attenuate changes.
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Why does L2 regularization help?

Bo € R? B, € R? By € R B; € R?

o= e Seas g O

Same for the
pre-activations
into the last layer
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Why does L2 regularization help?

Bo € R? B, € R? By € R B; € R?

o= e Seas g O

And so on...

All the way back.
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Why does L2 regularization help?

* Discourages fitting excessively to the training data (overfitting)

* Encourages smoothness between datapoints

* Specifically by making coefficients smaller, so small input changes have
smaller output changes.

22



L2 regularization (simple net from last lecture)
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PyTorch Explicit L2 Regularizer

SGD ADAM

+
CLASS torch.optim.SGD(params, 1r=0. 001, momentum=0, dampening=0, weight_decay=0, CLASS torch.optim.Adam(params, 11=0.001, betas=(0.9, 0.999), eps=1e-08,
e — $ _ _ _ I ] -
nesterov=False, +, maximize=False, foreach=None, differentiable=False) [SOURCE] welght decay=0 avsgrad-False, +, Toreach-None, Rexinize=False,
capturable=False, differentiable=False, fused=None) [SOURCE]
Implements stochastic gradient descent (optionally with momentum). .
Implements Adam algorithm.
Parameters Parameters

« params (iterable) - iterable of parameters to optimize or dicts defining parameter groups params (iterable) - iterable of parameters to optimize or dicts defining parameter groups

s Ir (float, Tensor, optional) - learning rate (default: 1e-3). A tensor LR is not yet supported

+ Ir (float, optional) - learning rate (default: 1e-3)
for all our implementations. Please use a float LR if you are not also specifying fused=True

+ momentum (float, optional) - momentum factor (default: 0) or capturable=True

— * weight_decay (float, optional) - weight decay (L2 penalty) (default: 0) » betas (Tuple[float, float], optional) - coefficients used for computing running averages of
gradient and its square (default: (0.9, 0.999))
+ eps (float, optional) - term added to the denominator to improve numerical stability

(default: 1e-8)
https://pytorch.org/ /stable/generated/torch.optim.SGD.html _ «» weight_decay (floar, optional) - weight decay (L2 penalty) (default: 0)

https://pytorch.org/ /stable/generated/torch.optim.Adam.html
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https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

Any Questions?
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Moving on

Reproducing Double Descent Demystified
Explicit regularization &= aicleled o (555
Implicit regularization & not ' fo [, beywk |
Early stopping er el el
Ensembling

Dropout

Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation
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Implicit regularization

OL[,] -
(9qb a—0

b1 = Pr —

* In the limit, as a — 0, the gradient
descent equation becomes the

gradient flow differential equation.

* Doesn’t converge to the same
place

| gradient

descent




Implicit regularization
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Implicit regularization

a)l Loss b)

gradient
descent

d1

0 | -] 0
o ®o

Gradient descent doesn’t Plot of the Implicit regularization
: 2
converge to same location as (~||6L/a¢|| ) to be added to loss

(continuous) gradient flow.

Regularization

C) Loss + regularization

0
b0

With regularization, continuous
descent converges to same
28
place



Implicit regularization of SGD

* Gradient descent disfavors areas where gradients are steep
2 -1 ren m[;fﬁlﬁtggﬁfq%

~ a ||OL . £ ot Inere.
I, — 1, ?r@—ﬁ%g T v
* SGD likes all batches to have similar gradients
515
56’][} .ﬁf@?‘rg 9|b
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Implicit regularization of SGD

* Gradientdescent disfavors areas where gradients are steep

Loplél =Lig) + 5 |52

* SGD likes all batches to have similar gradients

0L, OL 2
O

B

52| 0

Lsapl¢] = Lap[e] + %

oL, _oLf

= Llg] + -

4

. Eepends on learning rate — perhaps why larger learnlng rates generalize
etter.



Loss and Regularlzatlon Surfaces

Loss Lig] GD modification
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a) MNISTID no label noise b) MNISTID no label noise

=== [Fyll batch, LR = 0.5 | === Batch size 10, LR = 0.1
— Full batch, LR = 0.1 — Batch Size 100, LR = 0.1
601 tk Full batch, LR = 0.05 60| Full batch (4000), LR = 0.1

Test

Train

0 ST . 0 . . .
0 100 200 300 ~—400 0 100 200 300 400

Hidden layer size Hidden layer size

Generally, performance is
* best forlarger learning rates
* best with smaller batches -



Recap: Implicit regularization of GD and SGD

* Larger learning rates may lead to better generalization

* SGD seems to favor places where gradients are stable (all batches
agreed on slope)

* SGD generalizes better than GD
* Smaller batches in SGD generally perform better than larger ones

33



Any Questions?
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Moving on

Reproducing Double Descent Demystified
Explicit regularization
Implicit regularization

Ensembling
Dropout
Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation



Early stopping

* If we stop training early, weights don’t have time to overfit to noise
* Weights start small, don’t have time to get large
* Reduces effective model complexity

e Known as

 Don’t have to re-train with different hyper-parameters — just
“checkpoint” regularly and pick the model with lowest validation

loss \)
e o\ M o) @ Arom AVARS Stondarch (P

C6 M?MU%YHU\QQ-\(R;%{\ ktji';% —rﬁ{?f MV\ C/[r\QLb\?ULtI'\‘.}YL
G0 back o begr vellbuion theck e 35

lo wwm“-s
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Simplified shallow network model with 14 linear regions initialized randomly (cyan curve in (a) ) and trained
with SGD using a batch size of five and a learning rate of 0.05. °°



Project 1 Provided Code

accuracy Loss
1.0 1
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Project 1 36 Epochs

accuracy
0.505 4
0.504 -
0.503 -
—— training
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Loss
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Any Questions?
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Moving on

Reproducing Double Descent Demystified
Explicit regularization

Implicit regularization

Early stopping

Dropout
Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation



Ensembling

e Combine several models —an ensemble
* Combining outputs

_______|Mean | Median/Frequent (Robust)

Regression Mean of outputs Median of outputs

Classification Mean before softmax Most frequent predicted class

Mord. ymn
* Can be simply different initializations or evelmgifferent mo@ u.//é{wm;ﬂ;#

* Or train with different subsets of the data resampled with mod s
replacements — bootstrap aggregating (bagging)

X)W‘uﬁuﬁy SLIGP"E&\U\{ W\OC&JS “"fbx:}r\ao{ bi//d&rg-ge{@,ﬂjl/ \iml(é"’fmff’ﬂﬂ[fg
i é“wgrkﬁca"l g—'((uu—:fu v e »




Single Model vs Bagged Ensemble

a)4 ; Origimal b) Model 1 C) Model 2
= './\ j /'\ j/»\
S > B 4 \ - R
O 1 'Mv// y \-v’/ ] ‘AAvv//
- Single model 1 Bagging Model 1 1 Bagging Model 2
00 05 1000 05 1000 05 10
d)4 . Model 3 e) Model 4 f) Ensemble
~ | | o~
= /7 )
g N % \\ Lt \\
+ \ -r’
> \ |
O ] \ Y \/ / | r O -/ ] \ ¥ \."’/
1 Bagging Model 3 1 Bagging Model 4 1 Ensembling via bagging.
I'Oo.o' - 05 1000 05 1000 05 10
Input, Input, Input,
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Moving on

Reproducing Double Descent Demystified
Explicit regularization

Implicit regularization

Early stopping

Ensembling

Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation



lteration: 1
lteration: 3

: : : o Y

* Makes the network less dependent on any given hidden unit. o WP

o\, At test time, all hidden units are active, which was not the case during training
Erec,kid"@ * Must rescale using weight scaling inference rule
 Multiply weights by (1 — dropout probability) so Wthe same.

44



Dropout

Original b)  Turnoff hiddenunit8  €) 2000 iters dropout (7/8/9)

b0 05 1000 05 1000 05
Input, Input, Input,

* Prevents situations where subsequent hidden units correct for excessive

swings from earlier hidden units
e (Can eliminate kinks in function that are far from data and don’t contribute to

45

training loss



Monte Carlo Dropout for Inference (optional)

* Run the network multiple times with different random subsets of
units clamped to zero (as in training).

* Combine the results using an ensembling method,

* This is closely related to ensembling in that every random version
of the network i1s a different model; however, we do not have to

train or store multiple networks here. IS

Ynimies Traancny P
MOre, _QU:M\QL’\:\ )ffD “\Tr’_b\: n.'ﬁﬂﬂ
’li" NN f&t‘b)f% Fes r_c-,\,kiﬁ? < Q"C“’L'?eﬂ \



Any Questions?

277

Moving on
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Implicit regularization
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Ensembling

Dropout
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Adding noise

Adding noise to input with different variances.

a), . b) c)
. o, = 0.0 . o, = 0.60 . o, = 1.0
> / \ / \ ' ’\\
5 X ' '
Q. ' /
e o5 0 o0 05 0 00 o5 10
Input, Input, x Input, x

* toinputs—induces weight regularization (see Exercise 9.3 in UDL)
* to weights — makes robust to small weight perturbations
* to outputs (labels) - reduces “overconfident” probability for target class

48



Any Questions?

277

Moving on

Reproducing Double Descent Demystified
Explicit regularization

Implicit regularization

Early stopping

Ensembling

Dropout

Adding noise

Transfer learning, multi-task learning, self-
supervised learning

Data augmentation



Transfer & Multitask Learning, Augmentation

* Strictly speaking not regularization, but can help improve
generalization when dataset sizes are limited

50



Vone “‘-”/ LIS fzo.

levgst (M| o,
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Transfer Learning

(1) Train the model for
segmentation

Assume we have lots of
segmentation training

Segmentation

Model |—>
output layer

data
| copy
Depth Assume we have
Meiclel = output layer limited depth training
data
(2) Replace the final layers to (3) Either:

match the new task and a) Freeze the rest of the layers

and train the final layers
b) Finetune the entire model



Multi-Task Learning

Segmentation

output layer
u— -
Depth

output layer

* Train the model for 2 or more tasks simultaneously
* Weighted combo of loss functions
Ltotal = a- Lsegmentation + :8 | Ldepth
* Less likely to overfit to training data of one task

* Can be harder to get training to converge. Might have to vary the
individual task loss weightings, a and 5.

52



Self-Supervised Learning

Inpainting

Model  |—>
output layer

The animal didn’t cross th‘ ot because it was too tired.

o PELT 204
* Mask out part of the training data

* Train model to try to infer missing data ees Mf“j’}ﬂ
* masked data is the target
=» Model learns characteristics of the data

Then apply transfer learning s



Any Questions?
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Data augmentation

e) Color balance

Flip
- ) :'\.} .

Rotate and crop

d)

Vertical stretch

55



Image augmentation in PyTorch

import torch

import torchvision.transforms as transforms

# Define augmentation pipeline

transform = transforms.Compose([
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomVerticalFlip(p=0.3),
transforms.RandomRotation(degrees=30),
transforms.Colorlitter(brightness=0.5, contrast=0.5, saturation=0.5),
transforms.RandomAffine(degrees=20, translate=(0.2, 0.2), shear=10),
transforms.RandomPerspective(distortion_scale=0.5, p=0.5),

transforms.ToTensor(), # Convert image to tensor

1)

# Apply transformations multiple times to visualize augmentation

augmented_image = transform(image)

| " I vision/main/ : himl


https://pytorch.org/vision/main/transforms.html

Data Augmentation: MNIST1D

TrainError 0.00, Test Error 31.00

Error

100

80 -

o0

40 A

20 A

— train
— fest
— test (augmented)

10

20

Epoch

30

40

50

Examples in training set: 4000
Examples in test set: 1000
Length of each example: 40

* Randomly circularly
rotate

* randomly scale between
0.8and 1.2
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Regularization overview

Make function smoother

Increase data

~

/

Data
augmentation
Multi-task
learning
Transfer
learning
Implicit

regularization

Apply noise
to weights

~

/

7

Combine multiple models

Find wider minima
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